【汇总】初中三年数学概念,必收藏!

发布时间:2018-08-10 19:31


有理数

有理数:整数和分数统称为有理数。


正整数、0、负整数统称为整数;正分数、负分数统称为分数。


绝对值:数轴上表示数a的点与原点的距离叫做a的绝对值。

(1)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

(2)两个负数,绝对值大的反而小。


乘方:求n个相同因数的积的运算,叫做乘方。乘方的结果叫做幂。在中,a叫做底数,n叫做指数。

负数的奇次幂是负数,负数的偶次幂是正数。


科学记数法:把一个数表示成的形式(其中a大于或等于1且小于10,n是正整数),使用的是科学记数法。


整式

单项式:由若干个字母和数字,经有限次乘法运算所得到的式子叫做单项式。

(1)单独的一个数字或一个字母也可以看做单项式。

(2)单项式中的数字(或表示常数的字母)因数叫做这个单项式的系数。

(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。


多项式:几个单项式的和叫做多项式。

(1)多项式中的每个单项式叫做多项式的项。

(2)多项式里,次数最高项的次数,叫做这个多项式的次数。

(3)所含字母相同,并且相同字母的指数也相同的项叫做同类项。


整式:单项式与多项式统称整式。


代数式:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来的式子,叫做代数式。


点、线、角

点的定理1:过两点有且只有一条直线。


点的定理2:两点之间线段最短。


直线定理1:过一点有且只有一条直线和已知直线垂直。


直线定理2:直线外一点与直线上各点连接的所有线段中,垂线段最短。


角的定理1:同角或等角的补角相等。


角的定理2:同角或等角的余角相等。


平行

平行公理:经过直线外一点,有且只有一条直线与这条直线平行。


推论:如果两条直线都和第三条直线平行,这两条直线也互相平行。


平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。


平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。


Part.1

平方根:如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根。


算术平方根:对于正实数a,它的平方根有两个,它们互为相反数,其中为正数的那一个平方根,叫做正实数a的算数平方根。


0的算术平方根是0。


无理数:无限不循环小数又叫做无理数。


实数:有理数和无理数统称为实数。

三角形

三角形三边关系定理:三角形两边的和大于第三边。

推论:三角形两边的差小于第三边。


三角形内角和定理:三角形三个内角的和等于180°。

推论:三角形的外角等于与它不相邻的两个内角的和。


三角形的重心:三角形三条中线的交点叫做三角形的重心。


多边形

定义:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形。


多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。


多边形内角和公式:n边形的内角和等于(n-2)×180°。


推论:任意多边的外角和等于360°。


全等三角形

性质:全等三角形的对应边、对应角相等。


判定:

1.边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等。

2.角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等。

3.推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等。

4.边边边定理(SSS):有三边对应相等的两个三角形全等。

5.斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等。


角的平分线

性质:角的平分线上的点到这个角的两边的距离相等。


判定:角的内部到角的两边的距离相等的点,在这个角的平分线上。


轴对称

垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。


垂直平分线的性质:线段垂直平分线上的点和这条线段两个端点的距离相等。


垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。


线段的垂直平分线可看作和线段两端点距离相等的所有点的集合。


轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。


两个图形对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称。


定理1:关于某条直线对称的两个图形是全等形。


定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。


定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。


逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。


等腰三角形

性质1:等腰三角形的两个底角相等(即等边对等角)。


性质2:等腰三角形的顶角平分线、底边上的中线和底边上的高相互重合(煎写成“三线合一”)。


判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。


直角三角形

性质1:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。


性质2:直角三角形斜边上的中线等于斜边上的一半。


勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a²+b²=c²。


勾股定理的逆定理:如果三角形的三边长a,b,c满足a²+b²=c²,那么这个三角形是直角三角形。


整式的乘法

整数指数幂的运算性质:

平方差公式:(a+b)(a-b)=a²-b²。

完全平方公式:(a+b)²=a²+2ab+b²,

(a-b)²=a²-2ab+b²。


平行四边形

平行四边形性质定理:

1.平行四边形的对角相等。

2.平行四边形的对边相等。

3.平行四边形的对角线互相平分。


推论:夹在两条平行线间的平行线段相等。


平行四边形判定定理:

1.两组对边分别平行的四边形叫做平行四边形。

2.两组对角分别相等的四边形是平行四边形。

3.两组对边分别相等的四边形是平行四边形。

4.对角线互相平分的四边形是平行四边形。

5.一组对边平行相等的四边形是平行四边形。


三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。


矩形

矩形性质定理:

1.矩形的四个角都是直角。

2.矩形的对角线相等。

推论:直角三角形斜边上的中线等于斜边的一半。


矩形判定定理:

1.有一个角是直角的平行四边形是矩形。

2.有三个角是直角的四边形是矩形。

3对角线相等的平行四边形是矩形。


菱形

菱形性质定理:

1.菱形的四条边都相等。

2.菱形的对角线互相垂直,并且每一条对角线平分一组对角。

菱形面积=对角线乘积的一半,即S=(a×b)÷2。


菱形判定定理:

1.有一组邻边相等的平行四边形是菱形。

2.四边都相等的四边形是菱形。

3.对角线互相垂直的平行四边形是菱形。


正方形

正方形性质定理1:正方形的四个角都是直角,四条边都相等。


正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。


垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。


推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧。


推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧。


推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧。

 

圆心角:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。


圆周角:

1.一条弧所对的圆周角等于它所对的圆心角的一半。

2.同弧或等弧所对的圆周角相等。

3.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

4.圆内接四边形的对角互补.

三点共圆:过不共线的三个点,可以作且只可以作一个圆。

 

切线的判定定理:经过圆的半径外端并且垂直于这条半径的直线是圆的切线。


切线的性质定理:圆的切线垂直于过切点的半径。


切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。


外心:三角形外接圆的圆心是三角形三条边的垂直平分线的交点,叫做这个三角形的外心。


内心:三角形的的切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心。

 

中心对称

定理1:关于中心对称的两个图形是全等的。 


定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。 


逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。


相似

平行线平分线段成比例:两条直线被一组平行线所截,所得的对应线段成比例。


推论:平行于三角形一遍的直线截其他两边(或两边的延长线),所得的对应线段成比例。

 

相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

 

相似三角形判定定理:

1.两角对应相等,两三角形相似。

2.两边对应成比例且夹角相等,两三角形相似。

3.三边对应成比例,两三角形相似。

 

性质定理:

1.相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比。

2.相似三角形对应线段的比等于相似比。

3.相似三角形面积的比等于相似比的平方。

 

位似:如果两个多边形不仅是相似,而且对应顶点的连线相交于一点,那么这两个图形叫做位似图形,这点叫做位似中心。


三角函数

任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值。 


任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值。


比例的性质

比例的基本性质

如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d。

 

合比性质

如果a/b=c/d,那么(a±b)/b=(c±d)/d。

 

等比性质

如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b。




户学1V4 暑期班火热报名中为了回馈新老客户,让更多学生完成学霸梦想,户学教育重磅推出暑期班课程【1440分钟,相当于24小时,单次课程时长90分钟,先免费试听,满意再报名!】孩子足不出户就能上到名师亲授精品课程,在家轻松当学霸!是不是很惊喜呢!

先免费试听,满意再报名

活动规则

1. 课程时长:1440分钟,相当于24小时,单次课程时长90分钟

2. 适用学员:初一到高三

3. 主要课程:英语、数学

4. 活动时间:2018.6.5——2018.8.15

课程报名方式

方式一:点击文末“阅读原文”进行报名。

方式二:长按识别上图二维码进行报名。

powered by 励志天下 © 2017 WwW.shulili.net